Code No: 20EE6P01

III B. TECH II SEMESTER REGULAR EXAMINATIONS APRIL - 2023 DIGITAL ELECTRONICS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 70

Note: Answer ONE question from each unit (5 × 14 = 70 Marks)

UNIT-I

1.	a)	i) Convert (F57) ₁₆ into decimal. ii) Convert (6348) ₁₀ into Octal.	[7M]
	b)	Obtain the 9's and 10's complement of $(389.61)_{10}$.	[7M]
		(OR)	
2.	a)	i) List the truth table of F = $(xy + xy' + y'z)'$ ii) Draw logic diagrams to implement the Boolean expression Y = A + B + B'(A +C')	[7M]
	b)	Implement the given function using NOR gates only. $F(X, Y, Z) = \Sigma m(0,3,6).$	[7M]
		UNIT-II	
3.	a)	Obtain the simplified expression in product of sums. $F(A,B,C,D) = \pi(0,2,5,6,9,12,13)$	[7M]
	b)	Obtain the simplified expression in sum of products for the following Boolean function. BDE+B' C' D+CDE+A' B' CE+A' B' C+B' C' D' E'	[7M]
		(OR)	
4.	a)	Using K-map method, Reduce the following Boolean function. $F=\sum m(0,2,3,6,7) + d(8,10,11,15)$ and obtain minimal SOP	[7M]
	b)	Explain a four-bit binary adder circuit with relevant diagram.	[7M]
		UNIT-III	
5.	a)	Design the logic circuit for full subtractor using truth table.	[7M]
	b)	Implement a 2-bit magnitude comparator	[7M]
		(OR)	

- 6. a) Design16 x 4 encoders using two 8 x 3 encoders.
 - b) Implement Boolean function $F(A,B,C,D)=\Sigma m(0,1,3,4,8,9,15)$ using [7M] 8:1 multiplexer.

UNIT-IV

- 7. a) Design MOD-10 asynchronous counter using JK flipflop. [7M]
 - b) Explain in detail the operation of a 4-bit binary ring counter. [7M]

(OR)

- 8. a) Design a D flip flop using JK flip flop and explain with its truth [7M] table
 - b) What is shift register? Explain the working of 4-bit [7M] bidirectional shift register.

UNIT-V

- 9. a) Explain state diagram, state table and state assignment with [7M] example.
 - b) Write difference between Mealy and Moore machines in detail. [7M]

(OR)

- 10. a) Design an FSM for serial sequence detector with the pattern "0110" [7M] with non-overlapping. use Mealy Machine.
 - b) Write design procedure of a finite state machine. [7M]

* * * * *

